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Bayes' Rule

Bayes' Rule

Assume that {Bj, B, ..., Bk} is a partition of S such that
P(B;) >0, for i =1,2,..., k. Then

P(A|B;)P(B))
- .
; P(A|B;)P(B;)

P(Bj|A) =

N
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Applying Baye's Rule to Classification

Credit Cards Scoring: Low-risk vs. High-risk

@ According to the past transactions, some customers are
low-risk in that they paid back their loan and the bank
profited from them and other customers are high-risk in that
they defaulted.

@ We would like to learn the class “high-risk customer”

@ We observe customer’s yearly income and savings, which we
represent by two random variables X; and Xo

@ The credibility of a customer is denoted by a Bernoulli
random variable C where C = 1 indicates a high-risk
customer and C = 0 indicated a low-risk customer




Applying Baye's Rule to Classification

How to make the decision when a new application arrives?

@ When a new application arrives with X; = x; and X5 = x»

o If we know the probability of C conditioned on the
observation X = [x1, xz] our decision will be

o C=1if P(C=1|[x1, x]) >05
o C = 0 otherwise

@ The probability of error we made based on this rule is
1 —max{P(C = 1|[x1, x2]), P(C =0|[x1, x2])} < 0.5

@ Please note P(C = 1|[x1, x2]) + P(C =0|[x1, x2]) =1




The Posterior Probability:P(C|x) = %

e P(C =1) is called the prior probability that C =1

@ In our example, it corresponds to a probability that a
customer is high-risk, regardless of the x value.

@ It is called the prior probability because it is the knowledge we
have before looking at the observation x

e P(x|C) is called the class likelihood and is the conditional
probability that an has the
associated observation value x

@ P(x), the evidence is the probability that an observation x to
be seen, regardless of whether it is a positive or negative
example

All above information can be extracted from the past transactions
(historical data)



The Posterior Probability:P(C|x) = %

@ Because of normalization by the evidence, the posteriors sum
uptol

@ In our example, P(X1, X2) is called the joined probability of
two random variables X7 and X5

@ Under the assumption, these two random variables X; and X;
are conditional probability independent, we have
P(X1, X2|C) = P(X1| C)P(X2|C)

@ It is one of key assumptions of Naive Bayes’ Classifier

@ Although it is over simplified the problem it is very easy to
use for real applications
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Extend to Multi-class classification

We have K mutually and exhaustive classes;
G,i=12...K

For example, in optical digit recognition, the input is a bitmap
image and there are 10 classes

We can think of that these K classes define a partition of the
input space

Please refer to the slides of the Partition Theorem and Baye's
Rule

The Bayes' classifier choose the class with the highest
posterior probability; that is we choose C; if

P(Ci|x) = max P(Ck|x)

Question: Is it very important to have P(x), the evidence?



Naive Bayes for Classification
Also Good for Multi-class Classification

e Estimate a posteriori probability of class label

@ Let each attribute (variable) be a random variable. What is
the probibility of

Pr(y =1|x) = Pr(y = 1|X1 = x1, Xa = x2, ..., X = Xp)

@ Naive Bayes TWO not reasonable assumptions:

e The importance of each attribute is equal
e All attributes are conditional probability independent !

1

PrX =) [IPr(y =11Xi = x)

i=1

Pr(y =1Jx) =



The Weather Data Example
lan H. Witten & Eibe Frank, Data Mining

Outlook | Temperature | Humidity | Windy | Play(Label)
Sunny Hot High False -1
Sunny Hot High True -1

Overcast Hot High False +1
Rainy Mild High False +1
Rainy Cool Normal False +1
Rainy Cool Normal True -1

Overcast Cool Normal True +1
Sunny Mild High False -1
Sunny Cool Normal False +1
Rainy Mild Normal False +1
Sunny Mild Normal True +1

Overcast Mild High True +1

Overcast Hot Normal False +1
Rainy Mild High True -1




MLE for Bernoulli Distribution

play vs. not play

Likelihood Function

The probability to observe the random sample X = {x‘}}_, is

[Ira-p*

t=1

Why don't we choose the parameter p which will maximize the
probability for observing the random sample X = {xt}i\’zl?

Based on MLE, we will choose the parameter p

N
_ D1 X

P N
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MLE for Multinomial Distribution

Multinomial Distribution: Sunny, Cloudy and Rainy

Consider the generalization of Bernoulli where instead of two
possible outcomes, the outcome of a random event is one of k
classes, each of which has a probability of occurring p; and

k
Zp,- =1. Let xy,xp,...,Xx be k indicator variables where x; = 1
i=1
if the outcome is class i and x; = 0 otherwise. i.e.,

k
’D(X17X27" '7Xk) = Hpi(l
i=1

Let X = {xt}i\’zl be N independent radom experiments. Based on
MLE, we will choose the parameter p;

N t
ﬁ,_zjfl——le', i=1.2,.. .k
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Probabilities for Weather Data
Using Maximum Likelihood Estimation

Based on MLE, we will choose the parameter p;

N
DL AN

pi = =
Outlook Temp. Humidity Windy Play
Play Yes No Yes No Yes No Yes No | Yes No
Sunny 2/9 | 3/5 | Hot | 2/9 | 2/5 .
Overcast | 4/9 | 0/5 | Mild | 4/9 | 3/5 | N8 g;g i?g : 2?3 g;g 9/14 | 5/14
Rainy 3/9|2/5 | Cool | 3/9 | 1/5

Likelihood of the two classes:

2 3 3 3 9

Priy =1 I, high, T)oc=-2.2.2. =
r(y |sunny, cool, high, T) 9099 14

31 4 3 5

Pr(y = —1 I, highy T)ox == -~.2. >
r(y |sunny, cool, high, )o<5 555 14
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Zero-frequency Problem

e What if an attribute value does NOT occur with a class
value?
e The posterior probability will all be zero!l No matter how likely

the other attribute values are!
k—+ A

n—+ a\
@ Question: Roll a dice 8 times. The outcomes are as:
2,5, 6,2 1,5 3, 6. What is the probability for showing 4?7

o Laplace estimator will fix “zero-frequency”,

0+ A 2+ A

PriX=9=g1en PX=9=g7%
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