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Bayes’ Rule

Bayes’ Rule

Assume that {B1,B2, . . . ,Bk} is a partition of S such that
P(Bi ) > 0, for i = 1, 2, . . . , k. Then

P(Bj |A) =
P(A|Bj)P(Bj)
k∑

i=1
P(A|Bi )P(Bi )

.
A ∩B1

A ∩B2

A ∩B3

B1
B2

B3

S
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Applying Baye’s Rule to Classification

Credit Cards Scoring: Low-risk vs. High-risk

According to the past transactions, some customers are
low-risk in that they paid back their loan and the bank
profited from them and other customers are high-risk in that
they defaulted.

We would like to learn the class “high-risk customer”

We observe customer’s yearly income and savings, which we
represent by two random variables X1 and X2

The credibility of a customer is denoted by a Bernoulli
random variable C where C = 1 indicates a high-risk
customer and C = 0 indicated a low-risk customer
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Applying Baye’s Rule to Classification

How to make the decision when a new application arrives?

When a new application arrives with X1 = x1 and X2 = x2
If we know the probability of C conditioned on the
observation X = [x1, x2] our decision will be

C = 1 if P(C = 1|[x1, x2]) > 0.5
C = 0 otherwise

The probability of error we made based on this rule is

1−max{P(C = 1|[x1, x2]),P(C = 0|[x1, x2])} < 0.5

Please note P(C = 1|[x1, x2]) + P(C = 0|[x1, x2]) = 1
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The Posterior Probability :P(C |x) = P(C )P(x|C )
P(x)

P(C = 1) is called the prior probability that C = 1

In our example, it corresponds to a probability that a
customer is high-risk, regardless of the x value.

It is called the prior probability because it is the knowledge we
have before looking at the observation x

P(x|C ) is called the class likelihood and is the conditional
probability that an event belonging to the class C has the
associated observation value x

P(x), the evidence is the probability that an observation x to
be seen, regardless of whether it is a positive or negative
example

All above information can be extracted from the past transactions
(historical data)
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The Posterior Probability :P(C |x) = P(C )P(x|C )
P(x)

Because of normalization by the evidence, the posteriors sum
up to 1

In our example, P(X1,X2) is called the joined probability of
two random variables X1 and X2

Under the assumption, these two random variables X1 and X2

are conditional probability independent, we have
P(X1,X2|C ) = P(X1|C )P(X2|C )

It is one of key assumptions of Naive Bayes’ Classifier

Although it is over simplified the problem it is very easy to
use for real applications
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Extend to Multi-class classification

We have K mutually and exhaustive classes;
Ci , i = 1, 2, . . . ,K

For example, in optical digit recognition, the input is a bitmap
image and there are 10 classes

We can think of that these K classes define a partition of the
input space

Please refer to the slides of the Partition Theorem and Baye’s
Rule

The Bayes’ classifier choose the class with the highest
posterior probability; that is we choose Ci if

P(Ci |x) = max
k

P(Ck |x)

Question: Is it very important to have P(x), the evidence?
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Näıve Bayes for Classification
Also Good for Multi-class Classification

Estimate a posteriori probability of class label

Let each attribute (variable) be a random variable. What is
the probibility of

Pr(y = 1|x) = Pr(y = 1|X1 = x1,X2 = x2, . . . ,Xn = xn)

Näıve Bayes TWO not reasonable assumptions:

The importance of each attribute is equal
All attributes are conditional probability independent !

Pr(y = 1|x) =
1

Pr(X = x)

n∏
i=1

Pr(y = 1|Xi = xi )
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The Weather Data Example
Ian H. Witten & Eibe Frank, Data Mining

Outlook Temperature Humidity Windy Play(Label)

Sunny Hot High False -1
Sunny Hot High True -1

Overcast Hot High False +1
Rainy Mild High False +1
Rainy Cool Normal False +1
Rainy Cool Normal True -1

Overcast Cool Normal True +1
Sunny Mild High False -1
Sunny Cool Normal False +1
Rainy Mild Normal False +1
Sunny Mild Normal True +1

Overcast Mild High True +1
Overcast Hot Normal False +1

Rainy Mild High True -1
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MLE for Bernoulli Distribution
play vs. not play

Likelihood Function

The probability to observe the random sample X = {x t}Nt=1 is

N∏
t=1

px
t
(1− p)1−x t

Why don’t we choose the parameter p which will maximize the
probability for observing the random sample X = {x t}Nt=1?

Based on MLE, we will choose the parameter p

p =

∑N
t=1 x

t

N
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MLE for Multinomial Distribution

Multinomial Distribution: Sunny, Cloudy and Rainy

Consider the generalization of Bernoulli where instead of two
possible outcomes, the outcome of a random event is one of k
classes, each of which has a probability of occurring pi and
k∑

i=1

pi = 1. Let x1, x2, . . . , xk be k indicator variables where xi = 1

if the outcome is class i and xi = 0 otherwise. i.e.,

P(x1, x2, . . . , xk) =
k∏

i=1

pxii

Let X = {xt}Nt=1 be N independent radom experiments. Based on
MLE, we will choose the parameter p̂i

p̂i =

∑N
t=1 x

t
i

N
, i = 1, 2, . . . k
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Probabilities for Weather Data
Using Maximum Likelihood Estimation

Based on MLE, we will choose the parameter p̂i

p̂i =

∑N
t=1 x

t
i

N
, i = 1, 2, . . . k

Outlook Temp. Humidity Windy Play
Play Yes No Yes No Yes No Yes No Yes No

Sunny
Overcast
Rainy

2/9
4/9
3/9

3/5
0/5
2/5

Hot
Mild
Cool

2/9
4/9
3/9

2/5
3/5
1/5

High
Normal

3/9
6/9

4/5
1/5

T
F

3/9
6/9

3/5
2/5

9/14 5/14

Likelihood of the two classes:

Pr(y = 1|sunny , cool , high, T ) ∝ 2

9
· 3

9
· 3

9
· 3

9
· 9

14

Pr(y = −1|sunny , cool , high, T ) ∝ 3

5
· 1

5
· 4

5
· 3

5
· 5

14
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Zero-frequency Problem

What if an attribute value does NOT occur with a class
value?

The posterior probability will all be zero! No matter how likely
the other attribute values are!

Laplace estimator will fix “zero-frequency”,
k + λ

n + aλ
Question: Roll a dice 8 times. The outcomes are as:
2, 5, 6, 2, 1, 5, 3, 6. What is the probability for showing 4?

Pr(X = 4) =
0 + λ

8 + 6λ
, Pr(X = 5) =

2 + λ

8 + 6λ
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