Machine Learning

Yuh-Jye Lee

Lab of Data Science and Machine Intelligence Dept. of Applied Math. at NCTU

March 1, 2017

Bayes' Rule

Bayes' Rule

Assume that $\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ is a partition of S such that $P\left(B_{i}\right)>0$, for $i=1,2, \ldots, k$. Then

$$
P\left(B_{j} \mid A\right)=\frac{P\left(A \mid B_{j}\right) P\left(B_{j}\right)}{\sum_{i=1}^{k} P\left(A \mid B_{i}\right) P\left(B_{i}\right)} .
$$

Applying Baye's Rule to Classification

Credit Cards Scoring: Low-risk vs. High-risk

- According to the past transactions, some customers are low-risk in that they paid back their loan and the bank profited from them and other customers are high-risk in that they defaulted.
- We would like to learn the class "high-risk customer"
- We observe customer's yearly income and savings, which we represent by two random variables X_{1} and X_{2}
- The credibility of a customer is denoted by a Bernoulli random variable C where $C=1$ indicates a high-risk customer and $C=0$ indicated a low-risk customer

Applying Baye's Rule to Classification

How to make the decision when a new application arrives?

- When a new application arrives with $X_{1}=x_{1}$ and $X_{2}=x_{2}$
- If we know the probability of C conditioned on the observation $X=\left[x_{1}, x_{2}\right]$ our decision will be
- $C=1$ if $P\left(C=1 \mid\left[x_{1}, x_{2}\right]\right)>0.5$
- $C=0$ otherwise
- The probability of error we made based on this rule is

$$
1-\max \left\{P\left(C=1 \mid\left[x_{1}, x_{2}\right]\right), P\left(C=0 \mid\left[x_{1}, x_{2}\right]\right)\right\}<0.5
$$

- Please note $P\left(C=1 \mid\left[x_{1}, x_{2}\right]\right)+P\left(C=0 \mid\left[x_{1}, x_{2}\right]\right)=1$

The Posterior Probability: $P(C \mid \mathbf{x})=\frac{P(C) P(\mathbf{x} \mid C)}{P(\mathbf{x})}$

- $P(C=1)$ is called the prior probability that $C=1$
- In our example, it corresponds to a probability that a customer is high-risk, regardless of the \mathbf{x} value.
- It is called the prior probability because it is the knowledge we have before looking at the observation \mathbf{x}
- $P(\mathbf{x} \mid C)$ is called the class likelihood and is the conditional probability that an event belonging to the class C has the associated observation value \mathbf{x}
- $P(\mathbf{x})$, the evidence is the probability that an observation \mathbf{x} to be seen, regardless of whether it is a positive or negative example

All above information can be extracted from the past transactions (historical data)

The Posterior Probability: $P(C \mid x)=\frac{P(C) P(x) C)}{P(x)}$

- Because of normalization by the evidence, the posteriors sum up to 1
- In our example, $P\left(X_{1}, X_{2}\right)$ is called the joined probability of two random variables X_{1} and X_{2}
- Under the assumption, these two random variables X_{1} and X_{2} are conditional probability independent, we have $P\left(X_{1}, X_{2} \mid C\right)=P\left(X_{1} \mid C\right) P\left(X_{2} \mid C\right)$
- It is one of key assumptions of Naive Bayes' Classifier
- Although it is over simplified the problem it is very easy to use for real applications

Extend to Multi-class classification

- We have K mutually and exhaustive classes;

$$
C_{i}, i=1,2, \ldots, K
$$

- For example, in optical digit recognition, the input is a bitmap image and there are 10 classes
- We can think of that these K classes define a partition of the input space
- Please refer to the slides of the Partition Theorem and Baye's Rule
- The Bayes' classifier choose the class with the highest posterior probability; that is we choose C_{i} if

$$
P\left(C_{i} \mid \mathbf{x}\right)=\max _{k} P\left(C_{k} \mid \mathbf{x}\right)
$$

- Question: Is it very important to have $P(\mathbf{x})$, the evidence?

Naïve Bayes for Classification Also Good for Multi-class Classification

- Estimate a posteriori probability of class label
- Let each attribute (variable) be a random variable. What is the probibility of

$$
\operatorname{Pr}(y=1 \mid \mathbf{x})=\operatorname{Pr}\left(y=1 \mid \mathbf{X}_{1}=x_{1}, \mathbf{X}_{2}=x_{2}, \ldots, \mathbf{X}_{n}=x_{n}\right)
$$

- Naïve Bayes TWO not reasonable assumptions:
- The importance of each attribute is equal
- All attributes are conditional probability independent!

$$
\operatorname{Pr}(y=1 \mid \mathbf{x})=\frac{1}{\operatorname{Pr}(\mathbf{X}=\mathbf{x})} \prod_{i=1}^{n} \operatorname{Pr}\left(y=1 \mid \mathbf{X}_{i}=x_{i}\right)
$$

The Weather Data Example

 lan H. Witten \& Eibe Frank, Data Mining| Outlook | Temperature | Humidity | Windy | Play(Label) |
| :---: | :---: | :---: | :---: | :---: |
| Sunny | Hot | High | False | -1 |
| Sunny | Hot | High | True | -1 |
| Overcast | Hot | High | False | +1 |
| Rainy | Mild | High | False | +1 |
| Rainy | Cool | Normal | False | +1 |
| Rainy | Cool | Normal | True | -1 |
| Overcast | Cool | Normal | True | +1 |
| Sunny | Mild | High | False | -1 |
| Sunny | Cool | Normal | False | +1 |
| Rainy | Mild | Normal | False | +1 |
| Sunny | Mild | Normal | True | +1 |
| Overcast | Mild | High | True | +1 |
| Overcast | Hot | Normal | False | +1 |
| Rainy | Mild | High | True | -1 |

MLE for Bernoulli Distribution play vs. not play

Likelihood Function

The probability to observe the random sample $\mathbf{X}=\left\{x^{t}\right\}_{t=1}^{N}$ is

$$
\prod_{t=1}^{N} p^{x^{t}}(1-p)^{1-x^{t}}
$$

Why don't we choose the parameter p which will maximize the probability for observing the random sample $\mathbf{X}=\left\{x^{t}\right\}_{t=1}^{N}$?

Based on MLE, we will choose the parameter p

$$
p=\frac{\sum_{t=1}^{N} x^{t}}{N}
$$

MLE for Multinomial Distribution

Multinomial Distribution: Sunny, Cloudy and Rainy

Consider the generalization of Bernoulli where instead of two possible outcomes, the outcome of a random event is one of k classes, each of which has a probability of occurring p_{i} and
$\sum^{k} p_{i}=1$. Let $x_{1}, x_{2}, \ldots, x_{k}$ be k indicator variables where $x_{i}=1$ $i=1$
if the outcome is class i and $x_{i}=0$ otherwise. i.e.,
$P\left(x_{1}, x_{2}, \ldots, x_{k}\right)=\prod_{i=1}^{k} p_{i}^{x_{i}}$
Let $\mathbf{X}=\left\{\mathbf{x}^{\mathbf{t}}\right\}_{t=1}^{N}$ be N independent radom experiments. Based on MLE, we will choose the parameter \hat{p}_{i}

$$
\hat{p}_{i}=\frac{\sum_{t=1}^{N} x_{i}^{t}}{N}, \quad i=1,2, \ldots k
$$

Probabilities for Weather Data Using Maximum Likelihood Estimation

Based on MLE, we will choose the parameter \hat{p}_{i}

$$
\hat{p}_{i}=\frac{\sum_{t=1}^{N} x_{i}^{t}}{N}, \quad i=1,2, \ldots k
$$

Outlook			Temp.			Humidity			Windy			Play	
Play	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2/9	3/5	Hot	2/9	2/5								
Overcast	4/9	0/5	Mild	4/9	3/5	High Normal	$\begin{aligned} & 3 / 9 \\ & 6 / 9 \end{aligned}$	$\begin{aligned} & 4 / 5 \\ & 1 / 5 \end{aligned}$	F	$\begin{aligned} & 3 / 9 \\ & 6 / 9 \end{aligned}$	$\begin{aligned} & 3 / 5 \\ & 2 / 5 \end{aligned}$	9/14	5/14
Rainy	3/9	2/5	Cool	3/9	$1 / 5$	Normal	6/9	1/5	F	6/9	2/5		

Likelihood of the two classes:

$$
\begin{aligned}
\operatorname{Pr}(y & =1 \mid \text { sunny, cool, high, } T)
\end{aligned} \propto \frac{2}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} \cdot \frac{3}{9} \cdot \frac{9}{14}, ~\left(\begin{array}{l}
\text { sunny, cool, high, } T)
\end{array}\right) \frac{3}{5} \cdot \frac{1}{5} \cdot \frac{4}{5} \cdot \frac{3}{5} \cdot \frac{5}{14} .
$$

Zero-frequency Problem

- What if an attribute value does NOT occur with a class value?
- The posterior probability will all be zero! No matter how likely the other attribute values are!
- Laplace estimator will fix "zero-frequency", $\frac{k+\lambda}{n+a \lambda}$
- Question: Roll a dice 8 times. The outcomes are as:
$2,5,6,2,1,5,3,6$. What is the probability for showing 4 ?

$$
\operatorname{Pr}(X=4)=\frac{0+\lambda}{8+6 \lambda}, \quad \operatorname{Pr}(X=5)=\frac{2+\lambda}{8+6 \lambda}
$$

